Investigating the use of light diffraction for the closed-loop control of heliostats

M. Claassen, W.J. Smit

Solar Thermal Energy Research Group Stellenbosch University

5th Annual STERG SolarPACES Symposium STELLENBOSCH, SOUTH AFRICA 13 - 14 JULY 2017

visit concentrating.sun.ac.za contact sterg@sun.ac.za

Overview

- Introduction
- Background
- Diffraction
- Method
- Conclusion

5th Annual STERG SolarPACES Symposium STELLENBOSCH, SOUTH AFRICA 13 - 14 JULY 2017

 $\langle \rangle$

Introduction

Heliostats in Central Receiver Systems

5th Annual STERG SolarPACES Symposium STELLENBOSCH, SOUTH AFRICA 13 - 14 JULY 2017

visit concentrating.sun.ac.za contact sterg@sun.ac.za

Introduction

Aiming Problem

13 - 14 JULY 2017

RESEARCH GROUP

 $\langle O \rangle$

Open-loop control

- Deterministic and nondeterministic error sources cause drift requiring calibration, which is time consuming
- No aiming feedback during operation requires drives with very tight tolerances which are costly

Open-loop control

PS10

Gemosolar

Sierra ST. Crescent D.

 $\langle \rangle$

5th Annual STERG SolarPACES Symposium 13 - 14 JULY 2017

visit concentrating.sun.ac.za sterg@sun.ac.za contact

Closed-loop (local feedback)

- Real-time alignment feedback negates the need for expensive drives with tight tolerances

- Mounting sensors on every heliostat can be expensive, esp. for large helio. fields

Closed-loop ("Receiver" feedback)

Receiver Feedback

- Real-time alignment feedback negates the need for expensive drives with tight tolerances
- Does not require sensors on every heliostat
- Multiple/All heliostats can be controlled simultaneously

Electromagnetic Spectrum

STELLENBOSCH UNIVERSITY 5th Annual STERG SolarPACES Symposium STELLENBOSCH, SOUTH AFRICA 13 - 14 JULY 2017

visit concentrating.sun.ac.za contact sterg@sun.ac.za

Electromagnetic Spectrum

5th Annual STERG SolarPACES Symposium STELLENBOSCH, SOUTH AFRICA 13 - 14 JULY 2017

visit concentrating.sun.ac.za contact sterg@sun.ac.za

 $\langle \circ \rangle$

Spectroscopy

 $\langle \rangle$

Diffraction gratings: Interference

The path difference between r_1 and r_2 is $d\sin\theta_m + d\sin\theta_i$. If this difference is equal to the wavelength λ (or a multiple, $m\lambda$, thereof), r_1 and r_2 will interfere constructively:

$$d\sin \theta_m + d\sin \theta_i = m\lambda \qquad m = 0, \pm 1, \pm 2 \dots$$
$$\theta_m(\lambda) = \sin^{-1} \left(\frac{m\lambda}{d} - \sin \theta_i \right)$$

Diffraction gratings: Interference

5th Annual STERG

SolarPACES Symposium

13 - 14 JULY 2017

The path difference between r_1 and r_2 is $d\sin\theta_m + d\sin\theta_i$. If this difference is equal to the wavelength λ (or a multiple, $m\lambda$, thereof), r_1 and r_2 will interfere constructively:

$$d\sin\theta_m + d\sin\theta_i = m\lambda \qquad m = 0, \pm 1, \pm 2 \dots$$
$$\theta_m(\lambda) = \sin^{-1}\left(\frac{m\lambda}{d} - \sin\theta_i\right)$$

RESEARCH GE

m = -1

Diffraction gratings: Interference

The path difference between r_1 and r_2 is $d\sin\theta_m + d\sin\theta_i$. If this difference is θ equal to the wavelength λ (or a θ_{m} multiple, $m\lambda$, thereof), r_1 and r_2 will interfere constructively: dsin $d\sin\theta_m + d\sin\theta_i = m\lambda$ $m = 0, \pm 1, \pm 2...$ $\theta_m(\lambda) = \sin^{-1}\left(\frac{m\lambda}{d} - \sin\theta_i\right)$ m = 0m = 1 m = 2

> > visit concentrating.sun.ac.za

sterg@sun.ac.za

5th Annual STERG SolarPACES Symposium STELLENBOSCH, SOUTH AFRICA 13 - 14 JULY 2017

dsin 0

Diffraction gratings: Interference

13 - 14 JULY 2017

S

TFRG

RESEARCH GROUP

 $\langle \rangle$

• 1-D (Linear) diffraction grating

 $\langle \rangle$

Crossed (2-D) diffraction gratings

Diffraction orders will propagate in two directions, but the vector sum of the surface components of the diffraction orders in each direction represent another propagation direction.

5th Annual STERG SolarPACES Symposium STELLENBOSCH, SOUTH AFRICA 13 - 14 JULY 2017

visit concentrating.sun.ac.za contact sterg@sun.ac.za

 $\langle \circ \rangle$

Circular diffraction grating

STELLENBOSCH UNIVERSITY 5th Annual STERG SolarPACES Symposium STELLENBOSCH, SOUTH AFRICA 13 - 14 JULY 2017

visit concentrating.sun.ac.za contact sterg@sun.ac.za

 \bigcirc

Circular diffraction grating

5th Annual STERG SolarPACES Symposium STELLENBOSCH, SOUTH AFRICA 13 - 14 JULY 2017

 $\langle O \rangle$

Circular diffraction grating

5th Annual STERG SolarPACES Symposium STELLENBOSCH, SOUTH AFRICA 13 - 14 JULY 2017

visit concentrating.sun.ac.za contact sterg@sun.ac.za

 $\langle \rangle$

Circular diffraction grating

13 - 14 JULY 2017

RESEARCH GROUP

visit concentrating.sun.ac.za ontact sterg@sun.ac.za

 $\langle \rangle$

Circular diffraction grating

Overview

- Aim: Determine direction of the zeroth propagation order (direction of the zeroth propagation order coincides with the reflected beam).
- Camera senses the colour of diffracted light from some propagation order (1st), infers wavelength
- The light diffracted in the direction of the camera has a functional relationship with the zeroth order.

- Determining $k_{m=0}$: One camera viewpoint
- 1 Camera observes diffracted light and observes a specific colour, inferring the wavelength
- Since the circular diffraction grating diffracts light into a cone, there are an infinite directions for the zeroth order reflected beam, but is constrained to lie on a surface of a cone with vertex angle 2θ and with axis along the camera-grating vector
- Set of all possible incident vectors is the reflection (Snell's law) of the set of all possible reflection vectors and therefore also lies in a cone with angle vertex 2θ. Its axis is the reflection of the cameragrating vector.

- Determining $k_{m=0}$: One camera viewpoint
- 1 Camera observes diffracted light and observes a specific colour, inferring the wavelength
- Since the circular diffraction grating diffracts light into a cone, there are an infinite directions for the zeroth order reflected beam, but is constrained to lie on a surface of a cone with vertex angle 2θ and with axis along the camera-grating vector
- Set of all possible incident vectors is the reflection (Snell's law) of the set of all possible reflection vectors and therefore also lies in a cone with angle vertex 2θ. Its axis is the reflection of the cameragrating vector.

- Determining $k_{m=0}$: One camera viewpoint
- 1 Camera observes diffracted light and observes a specific colour, inferring the wavelength
- Since the circular diffraction grating diffracts light into a cone, there are an infinite directions for the zeroth order reflected beam, but is constrained to lie on a surface of a cone with vertex angle 2θ and with axis along the camera-grating vector
- Set of all possible incident vectors is the reflection (Snell's law) of the set of all possible reflection vectors and therefore also lies in a cone with angle vertex 2θ. Its axis is the reflection of the cameragrating vector.

- Determining $k_{m=0}$: One camera viewpoint
- 1 Camera observes diffracted light and observes a specific colour, inferring the wavelength
- Since the circular diffraction grating diffracts light into a cone, there are an infinite directions for the zeroth order reflected beam, but is constrained to lie on a surface of a cone with vertex angle 2θ and with axis along the camera-grating vector
- Set of all possible incident vectors is the reflection (Snell's law) of the set of all possible reflection vectors and therefore also lies in a cone with angle vertex 2θ. Its axis is the reflection of the cameragrating vector.

- Determining $k_{m=0}$: One camera viewpoint
- 1 Camera observes diffracted light and observes a specific colour, inferring the wavelength
- Since the circular diffraction grating diffracts light into a cone, there are an infinite directions for the zeroth order reflected beam, but is constrained to lie on a surface of a cone with vertex angle 2θ and with axis along the camera-grating vector
- Set of all possible incident vectors is the reflection (Snell's law) of the set of all possible reflection vectors and therefore also lies in a cone with angle vertex 2θ. Its axis is the reflection of the cameragrating vector.

- Determining $k_{m=0}$: One camera viewpoint
- 1 Camera observes diffracted light and observes a specific colour, inferring the wavelength
- Since the circular diffraction grating diffracts light into a cone, there are an infinite directions for the zeroth order reflected beam, but is constrained to lie on a surface of a cone with vertex angle 2θ and with axis along the camera-grating vector
- Set of all possible incident vectors is the reflection (Snell's law) of the set of all possible reflection vectors and therefore also lies in a cone with angle vertex 2θ. Its axis is the reflection of the cameragrating vector.

• Determining $k_{m=0}$: Two camera viewpoints

Special case: Incident light, grating normal and cameras lie in a plane.

- 2 Camera each observes diffracted light and each observes a specific colour, each inferring the wavelength.
- For each viewpoint, there are an infinite number of directions for the zeroth order reflected beam, but is constrained to lie on a surface of a cone
- The intersection of the bases of the cones is the unique solution for the direction of the zeroth order

S UNIVERSITEIT STELLENBOSCH UNIVERSITY

STERG

• Determining $k_{m=0}$: Two camera viewpoints

Special case: Incident light, grating normal and cameras lie in a plane.

- 2 Camera each observes diffracted light and each observes a specific colour, each inferring the wavelength.
- For each viewpoint, there are an infinite number of directions for the zeroth order reflected beam, but is constrained to lie on a surface of a cone
- The intersection of the bases of the cones is the unique solution for the direction of the zeroth order

5th Annual STERG

SolarPACES Symposium

13 - 14 JULY 2017

• Determining $k_{m=0}$: Two camera viewpoints

Similar special case: Incident light, grating normal and cameras lie in a plane.

- Set of possible reflection vectors for one viewpoint is encircled by the set of possible reflection vectors for the other viewpoint
- Again, the intersection of the bases of the cones is the unique solution for the direction of the zeroth order
- Can be shown that the intersection of the two circles is the unique solution for the direction of the zeroth order of the incident ray lies in the plane

5th Annual STERG SolarPACES Symposium 13 - 14 JULY 2017

• Determining $k_{m=0}$: Two camera viewpoints

Similar special case: Incident light, grating normal and cameras lie in a plane.

- Set of possible reflection vectors for one viewpoint is encircled by the set of possible reflection vectors for the other viewpoint
- Again, the intersection of the bases of the cones is the unique solution for the direction of the zeroth order
- Can be shown that the intersection of the two circles is the unique solution for the direction of the zeroth order of the incident ray lies in the plane

5th Annual STERG SolarPACES Symposium 13 - 14 JULY 2017

• Determining $k_{m=0}$: Two camera viewpoints

General case: Incident light lies in a an arbitrary plane

- The set of possible reflection vectors again lie along the surface of a cone for each viewpoint, but in this case there are two intersections.
- Therefore there is not a unique solution for the direction of the zeroth order vector

• Determining $k_{m=0}$: Three camera viewpoint

General case: Incident light lies in a an arbitrary plane

- Adding a third camera viewpoint will provide a unique solution

5th Annual STERG SolarPACES Symposium STELLENBOSCH, SOUTH AFRICA 13 - 14 JULY 2017

visit concentrating.sun.ac.za contact sterg@sun.ac.za

Conclusion

Design of diffraction grating

- Propagation directions independent of grating profile
- Profile determines the power diffracted into each order (blazing)
- Ray-trace simulation
- Experimentation

Thank You

ACKNOWLEDGEMENTS:

Dr W.J. Smit

Centre for Renewable and Sustainable Energy Studies (CRSES)

CONTACT DETAILS:

mclaassen@sun.ac.za Solar Thermal Energy Research Group (STERG) Stellenbosch University South Africa

visit us: concentrating.sun.ac.za